Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5015, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322083

RESUMO

It is crucial to control the tuning and improve the emission of a quantum emitter at the nanoscale. We report multiple Fano resonances in metallic nanostructures on an Er3+-doped tellurite glass. Periodic nanoslits were fabricated with a focused gallium ion beam on a gold thin film deposited on the tellurite glass. Is proposed a coupling function with Fano line-shape form, and the asymmetric parameter q for each resonance wavelength in the 515 to 535 nm region was calculated. This asymmetric resonance effect is a consequence of the quantum interaction between the continuum state, generated in the nanostructure, and the Stark splits of the [Formula: see text]H[Formula: see text] state.

2.
Phys Chem Chem Phys ; 23(34): 18694-18706, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612407

RESUMO

The electronic properties of BaTiO3 perovskite oxides are not completely understood, despite their excellent electro-optical performance and potential for light generation. Particularly, when there is multiple peak formation in the photoluminescence spectra, their origins are not discussed. Their luminescence spectra reveal an unexpected thermodynamic relationship between the core excitonic states and the surface of the BaTiO3. These results give a broad insight into the origins of the emission properties of perovskite oxides. The self-trapped excitons contribution to the broadbands highlights their extrinsic origin. Through spectroscopy techniques and parallel factor analysis (PARAFAC) modeling, we demonstrate that additional broadbands are sensitive to extrinsic defects, type ν-CH3, a product of decomposition of 2-propanol. The presence of C-H bonds shows the dependence with the calcination temperature and the increase of the lattice expansion coefficient until 4.7 × 10-6 K-1 resulting in the contribution to the change of band gap with the temperature ((dEg/dT)P). In this work, we correlated the electronic properties of BaTiO3 with intrinsic and extrinsic defects and elucidated the presence of additional broadbands. This approach differentiates the contributions of excitonic states and surfaces, which is necessary to understand the electronic properties of perovskite oxides.

3.
Phys Chem Chem Phys ; 22(26): 15022-15034, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597431

RESUMO

Photonic and electronic properties exist inherently in ferroelectric barium titanate (BaTiO3); severe luminescence quenching also exists due to the insufficient confinement of excitons. In this sense, high optical emission can only be achieved by its chemical and structural modification. Thin BaTiO3 and Er:BaTiO3 films were grown by the spin coating method on a glass substrate at room temperature. Self-trapping of excitons in the thin BaTiO3 film and its structural modification due to the doping with Er3+ ions (Er:BaTiO3) are verified using scanning confocal fluorescence microscopy (SCFM), where self-trapping excitons never occured in its pure state. By thermal treatment and doping (BaTiO3 and Er:BaTiO3) we obtained localization of the excitons, which would further induce lattice strain around the surface defects, to accommodate the self-trapped excitons. With such a self-trapped state, the structure of BaTiO3 generates broadband emission of several overlapping bands between 1.95 and 2.65 eV at room temperature, while the structure Er:BaTiO3 showed defined emission bands at 2.24 and 2.35 eV, with very weak contributions of the emission due to the self-trapping state. The influence of the variation of the excitation wavelength using 1PE and 2PE on the emission bands of BaTiO3 and Er:BaTiO3 is also investigated. The results of enhanced emission bands suggest a clear dependence of the emission intensity on the excitation energy, where a ∼3 fold enhancement in emission has been demonstrated under Er3+ (1.55 eV) excitation, which can be attributed to effective energy transfer between the Er3+ ions. As a result, it is concluded that the developed BaTiO3 and Er:BaTiO3 can pave the way for future photonic devices.

4.
Opt Express ; 22(17): 21122-36, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321311

RESUMO

The novelty of this paper is that it reports on the tuning of the spectral properties of Er3+ -Tm3+ ions in tellurite glasses in the near-infrared region through the incorporation of silver or gold nanoparticles. These noble metal nanoparticles can improve the emission intensity and expand the bandwidth of the luminescence spectrum centered at 1535 nm, covering practically all the optical telecommunication bands (S, C + L and U), and extended up to 2010 nm wavelength under excitation by a 976 nm laser diode. Both effects are obtained by the combined emission of Er3+ and Tm3+ ions due to efficient energy transfer processes promoted by the presence of silver or gold nanoparticles for the (Er3+)4I(11/2)→(Tm3+)3H5, (Er3+)4I(13/2)→(Tm3+)3H4 and (Er3+)4I(13/2)→(Tm3+)3F4 transitions. The interactions between the electronic transitions of Er3+ and Tm3+ ions that provide a tunable emission are associated with the dynamic coupling mechanism described by the variations generated by the Hamiltonian H DC in either the oscillator strength or the local crystal field, i.e. the line shape changes in the near-infrared emission band. The Hamiltonian is expressed as eigenmodes associated with the density of the conduction electron generated by the different nanoparticles through its collective free oscillations at each resonance frequency of the nanoparticle and their geometric dependence. A complete description of photon-plasmon interactions of noble metal nanoparticles with the Er3+ and Tm3+ ions is provided.

5.
Nanoscale Res Lett ; 6(1): 56, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27502678

RESUMO

A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of dot anisotropy and/or inter-dot coupling. Under special growth conditions, such as substrate temperature and Arsenic background, 1D chains of In0.4Ga0.6 As quantum dots were grown by molecular beam epitaxy. Grazing-incidence X-ray diffraction measurements directly evidence the strong strain anisotropy due to the formation of quantum dot chains, probed by polarization-resolved low-temperature photoluminescence. The results are in fair good agreement with the proposed model.

6.
Opt Express ; 18(24): 25321-8, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164880

RESUMO

We show the annealing effect on silver and Erbium-doped tellurite glasses in the formation of nanoparticles (NPs) of silver, produced by the reduction of silver (Ag+ → Ag0), aiming to an fluorescence enhancement. The absorption spectra show typical Localized Surface Plasmon Resonance (LSPR) band of Ag0 NP in addition to the distinctive absorption peaks of Er3+ ions. Both observations demonstrate that the photoluminescence enhancement is due to the coupling of dipoles formed by NPs with the Er3+ 4I(13/2) → 4I(15/2) transition. This plasmon energy transfer to the Er3+ ions was observed in the fluorescence spectrum with a blue-shift of the peaks.

7.
Nanoscale Res Lett ; 5(6): 991-1001, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20672035

RESUMO

Multilayer In0.4Ga0.6As/GaAs quantum dot (QD) chain samples are investigated by means of cw and time-resolved photoluminescence (PL) spectroscopy in order to study the peculiarities of interdot coupling in such nanostructures. The temperature dependence of the PL has revealed details of the confinement. Non-thermal carrier distribution through in-chain, interdot wave function coupling is found. The peculiar dependences of the PL decay time on the excitation and detection energies are ascribed to the electronic interdot coupling and the long-range coupling through the radiation field. It is shown that the dependence of the PL decay time on the excitation wavelength is a result of the superradiance effect.

8.
Phys Rev Lett ; 104(8): 086401, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366953

RESUMO

We report a comprehensive discussion of quantum interference effects due to the finite structure of neutral excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. The signatures of built-in electric fields and temperature on quantum interference are demonstrated by theoretical models that describe the modulation of the interference pattern and confirmed by complementary experimental procedures.

9.
Nanotechnology ; 19(50): 505605, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19942777

RESUMO

Lateral ordering of InGaAs quantum dots on the GaAs (001) surface has been achieved in earlier reports, resembling an anisotropic pattern. In this work, we present a method of breaking the anisotropy of ordered quantum dots (QDs) by changing the growth environment. We show experimentally that using As(2) molecules instead of As(4) as a background flux is efficient in controlling the diffusion of distant Ga adatoms to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). The control of the lateral ordering of QDs under As(2) flux has enabled us to improve their optical properties. Our results are consistent with reported experimental and theoretical data for structure and diffusion on the GaAs surface.

10.
Opt Lett ; 18(20): 1751-3, 1993 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19823506

RESUMO

We report the observation of narrow resonances in the optical region by using the method of separated oscillatory fields in an atomic beam. Because of optical pumping, two nearly degenerate optical fields create a time-dependent modulation of the ground-state population, which interferes with the optical fields in a second region, resulting in a fringe pattern. The width and shape of the observed fringes are the same as those observed with the usual Ramsey method, although no coherence between the two levels under investigation is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...